252 research outputs found

    Global dispersion and local diversification of the methane seep microbiome

    Get PDF
    Methane seeps are natural gas leaks at the seafloor that emit methane to the hydrosphere. The emission rates are controlled by methane-oxidizing microorganisms, which shape the ecosystem by supplying energy sources to other microorganisms and animal symbioses. We provide evidence that methane seeps are island-like habitats, harboring distinct microbial communities that share few organisms with other seafloor ecosystems. The seep communities comprise bacteria and archaea that occur worldwide but are locally selected by the environment. These microorganisms show high relative sequence abundances, suggesting high population densities and global relevance for the control of methane emission from the seafloor. At individual seeps, the cosmopolitan microorganisms are associated with a substantial diversity of rare relatives, turning seeps into hotspots of microbial biodiversity

    Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco

    Get PDF
    Pseudomonas populations producing the biocontrol compounds 2,4-diacetylphloroglucinol (Phl) and hydrogen cyanide (HCN) were found in the rhizosphere of tobacco both in Swiss soils suppressive to Thielaviopsis basicola and in their conducive counterparts. In this study, a collection of Phl+ HCN+Pseudomonas isolates from two suppressive and two conducive soils were used to assess whether suppressiveness could be linked to soil-specific properties of individual pseudomonads. The isolates were compared based on restriction analysis of the biocontrol genes phlD and hcnBC, enterobacterial repetitive intergenic consensus (ERIC)-PCR profiling and their biocontrol ability. Restriction analyses of phlD and hcnBC yielded very concordant relationships between the strains, and suggested significant population differentiation occurring at the soil level, regardless of soil suppressiveness status. This was corroborated by high strain diversity (ERIC-PCR) within each of the four soils and among isolates harboring the same phlD or hcnBC alleles. No correlation was found between the origin of the isolates and their biocontrol activity in vitro and in planta. Significant differences in T. basicola inhibition were however evidenced between the isolates when they were grouped according to their biocontrol alleles. Moreover, two main Pseudomonas lineages differing by the capacity to produce pyoluteorin were evidenced in the collection. Thus, Phl+ HCN+ pseudomonads from suppressive soils were not markedly different from those from nearby conducive soils. Therefore, as far as biocontrol pseudomonads are concerned, this work yields the hypothesis that the suppressiveness of Swiss soils may rely on the differential effects of environmental factors on the expression of key biocontrol genes in pseudomonads rather than differences in population structure of biocontrol Pseudomonas subcommunities or the biocontrol potential of individual Phl+ HCN+ pseudomonad strain

    Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae.

    Get PDF
    Actinobacillus pleuropneumoniae is a Gram-negative, rod-shaped bacterium of the family Pasteurellaceae causing pig pleuropneumonia associated with great economic losses worldwide. Nineteen serotypes with distinctive lipopolysaccharide (LPS) and capsular (CPS) compositions have been described so far, yet complete circular genomes are publicly available only for the reference strains of serotypes 1, 4 and 5b, and for field strains of serotypes 1, 3, 7 and 8. We aimed to complete this picture by sequencing the reference strains of 17 different serotypes with the MinION sequencer (Oxford Nanopore Technologies, ONT) and on an Illumina HiSeq (Illumina) platform. We also included two field isolates of serotypes 2 and 3 that were PacBio- and MinION-sequenced, respectively. Genome assemblies were performed following two different strategies, i.e. PacBio- or ONT-only de novo assemblies polished with Illumina reads or a hybrid assembly by directly combining ONT and Illumina reads. Both methods proved successful in obtaining accurate circular genomes with comparable qualities. blast-based genome comparisons and core-genome phylogeny based on core genes, SNP typing and multi-locus sequence typing (cgMLST) of the 26 circular genomes indicated well-conserved genomes across the 18 different serotypes, differing mainly in phage insertions, and CPS, LPS and RTX-toxin clusters, which, consistently, encode serotype-specific antigens. We also identified small antibiotic resistance plasmids, and complete subtype I-F and subtype II-C CRISPR-Cas systems. Of note, highly similar clusters encoding all those serotype-specific traits were also found in other pathogenic and commensal Actinobacillus species. Taken together with the presence of transposable elements surrounding these loci, we speculate a dynamic intra- and interspecies exchange of such virulence-related factors by horizontal gene transfer. In conclusion, our comprehensive genomics analysis provides useful information for diagnostic test and vaccine development, but also for whole-genome-based epidemiological studies, as well as for the surveillance of the evolution of antibiotic resistance and virulence genes in A. pleuropneumoniae

    CO2 leakage can cause loss of benthic biodiversity in submarine sands

    Get PDF
    One of the options to mitigate atmospheric CO2 increase is CO2 Capture and Storage in sub-seabed geological formations. Since predicting long-term storage security is difficult, different CO2 leakage scenarios and impacts on marine ecosystems require evaluation. Submarine CO2 vents may serve as natural analogues and allow studying the effects of CO2 leakage in a holistic approach. At the study site east of Basiluzzo Islet off Panarea Island (Italy), gas emissions (90-99% CO2) occur at moderate flows (80-120 Lm(-2) h(-1)). We investigated the effects of acidified porewater conditions (pH(T) range: 5.5-7.7) on the diversity of benthic bacteria and invertebrates by sampling natural sediments in three subsequent years and by performing a transplantation experiment with a duration of one year, respectively. Both multiple years and one year of exposure to acidified porewater conditions reduced the number of benthic bacterial operational taxonomic units and invertebrate species diversity by 30-80%. Reduced biodiversity at the vent sites increased the temporal variability in bacterial and nematode community biomass, abundance and composition. While the release from CO2 exposure resulted in a full recovery of nematode species diversity within one year, bacterial diversity remained affected. Overall our findings showed that seawater acidification, induced by seafloor CO2 emissions, was responsible for loss of diversity across different size-classes of benthic organisms, which reduced community stability with potential relapses on ecosystem resilience

    Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot

    Get PDF
    Certain soils from Morens, Switzerland, are naturally suppressive to Thielaviopsis basicola-mediated black root rot of tobacco, and fluorescent pseudomonads are involved in this suppressiveness. Here, we compared two conducive, one moderately suppressive and one suppressive soil from Morens. Disease levels on tobacco after heavy T. basicola inoculation varied from 29% to 85% for the two conducive soils, 10% to 78% for the moderately suppressive soil and 11% to 42% for the suppressive soil, depending on time of the year. In the absence of T. basicola inoculation, disease levels were between 0% and 40% and varied also in time. Fluorescent pseudomonads were isolated from the rhizosphere and roots of tobacco subjected to T. basicola inoculation and characterized for production of the biocontrol metabolites 2,4-diacetylphloroglucinol (Phl) and HCN. No difference in population size was found between the suppressive and the conducive soils for total, Phl+ and HCN+ fluorescent pseudomonads colonizing the rhizosphere or roots of tobacco. Yet, the percentage of Phl+ isolates was significantly higher (30-32% vs. 6-11%) in the rhizosphere and roots for plants grown in the suppressive soil compared with the moderately suppressive and conducive soils. Different restriction profiles for phlD, one of the Phl biosynthetic genes, were often found when analyzing Phl+ isolates colonizing the same plant. Most phlD alleles were recovered from both suppressive and conducive soils, except one allele found only in root isolates from the suppressive soi

    Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea

    Get PDF
    Hassenrück C, Tegetmeyer H, Ramette A, Fabricius KE. Minor impacts of reduced pH on bacterial biofilms on settlement tiles along natural pH gradients at two CO2 seeps in Papua New Guinea. ICES Journal of Marine Science. 2017;74(4):978-987.Bacterial biofilms provide cues for the settlement of marine invertebrates such as coral larvae, and are therefore important for the resilience and recovery of coral reefs. This study aimed to better understand how ocean acidification may affect the community composition and diversity of bacterial biofilms on surfaces under naturally reduced pH conditions. Settlement tiles were deployed at coral reefs in Papua New Guinea along pH gradients created by two CO2 seeps. Biofilms on upper and lower tiles surfaces were sampled 5 and 13 months after deployment. Automated Ribosomal Intergenic Spacer Analysis was used to characterize 240 separate bacterial communities, complemented by amplicon sequencing of the bacterial 16S rRNA gene of 16 samples. Bacterial biofilms consisted predominantly of Alpha-, Gamma-, and Delta-proteobacteria, as well as Cyanobacteria, Flavobacteriia, and Cytophagia, whereas taxa that induce settlement of invertebrate larvae only accounted for a small fraction of the community. Bacterial biofilm composition was heterogeneous, with on average only similar to 25% of operational taxonomic units shared between samples. Among the observed environmental parameters, pH was only weakly related to community composition (R-2 similar to 1%), and was unrelated to community richness and evenness. In contrast, biofilms strongly differed between upper and lower tile surfaces (contrasting in light exposure and grazing intensity). There also appeared to be a strong interaction between bacterial biofilm composition and the macroscopic components of the tile community. Our results suggest that on mature settlement surfaces in situ, pH does not have a strong impact on the composition of bacterial biofilms. Other abiotic and biotic factors such as light exposure and interactions with other organisms may be more important in shaping bacterial biofilms on mature surfaces than changes in seawater pH

    Seagrass biofilm communities at a naturally CO2-rich vent

    Get PDF
    Seagrass meadows are a crucial component of tropical marine reef ecosystems. Seagrass plants are colonized by a multitude of epiphytic organisms that contribute to broadening the ecological role of seagrasses. To better understand how environmental changes like ocean acidification might affect epiphytic assemblages, the microbial community composition of the epiphytic biofilm of Enhalus acroides was investigated at a natural CO2 vent in Papua New Guinea using molecular fingerprinting and next generation sequencing of 16S and 18S rRNA genes. Both bacterial and eukaryotic epiphytes formed distinct communities at the CO2-impacted site compared to the control site. This site-related CO2 effect was also visible in the succession pattern of microbial epiphytes. We further found an increased abundance of bacterial types associated with coral diseases at the CO2-impacted site (Fusobacteria, Thalassomonas) whereas eukaryotes such as certain crustose coralline algae commonly related to healthy reefs were less diverse. These trends in the epiphytic community of E. acroides suggest a potential role of seagrasses as vectors of coral pathogens and may support previous predictions of a decrease in reef health and prevalence of diseases under future ocean acidification scenarios

    A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses

    Get PDF
    The application of multivariate statistical analyses has become a consistent feature in microbial ecology. However, many microbial ecologists are still in the process of developing a deep understanding of these methods and appreciating their limitations. As a consequence, staying abreast of progress and debate in this arena poses an additional challenge to many microbial ecologists. To address these issues, we present the GUide to STatistical Analysis in Microbial Ecology (GUSTA ME): a dynamic, web-based resource providing accessible descriptions of numerous multivariate techniques relevant to microbial ecologists. A combination of interactive elements allows users to discover and navigate between methods relevant to their needs and examine how they have been used by others in the field. We have designed GUSTA ME to become a community-led and -curated service, which we hope will provide a common reference and forum to discuss and disseminate analytical techniques relevant to the microbial ecology community

    Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea

    Get PDF
    Permeable sediments and associated microbial communities play a fundamental role in nutrient recycling within coral reef ecosystems by ensuring high levels of primary production in oligotrophic environments. A previous study on organic matter degradation within biogenic carbonate and terrigenous silicate reef sands in the Red Sea suggested that observed sand-specific differences in microbial activity could be caused by variations in microbial biomass and diversity. Here, we tested this hypothesis by comparing bacterial abundance and community structure in both sand types, and by further exploring the structuring effects of time (season) and space (sediment depth, in/out-reef). Changes in bacterial community structure, as determined via automated ribosomal intergenic spacer analysis (ARISA), were primarily driven by sand mineralogy at specific seasons, sediment depths and reef locations. By coupling ARISA with 16S-ITS rRNA sequencing, we detected significant community shifts already at the bacterial class level, with Proteobacteria (Gamma-, Delta-, Alpha-) and Actinobacteria being prominent members of the highly diverse communities. Overall, our findings suggest that reef sand-associated bacterial communities vary substantially with sand type. Especially in synergy with environmental variation over time and space, mineralogical differences seem to play a central role in maintaining high levels of bacterial community heterogeneity. The local co-occurrence of carbonate and silicate sands may thus significantly increase the availability of microbial niches within a single coral reef ecosystem
    corecore